Some remarks on referentiality

نویسنده

  • Barbara Abbott
چکیده

The main focus of this paper is on two issues: which, if any, NPs can be used to refer, and which, if any, NPs can be (truthfully) said to refer all by themselves. It is evident just from this statement that we will be dealing with two distinct reference relations – a pragmatic relation holding among speakers, expressions, and entities out in the world (so to speak); and a semantic relation holding among expressions and entities. It should also be made clear that only singular reference will be at issue here, of either the semantic or pragmatic type. However I’ll assume that plural entities and masses are possible singular referents (as is standard these days – cf. e.g. Link 1983, Partee 1986). A couple of other background issues deserve sections of their own. In §2 we look at object-dependent propositions. I will sketch an argument for a view on which such propositions do not contain entities from the outside world, but in their stead contain constant individual concepts. §3 contains another argument for incorporating individual concepts into our semantics, based on the interpretation of indefinite descriptions. These sections will turn out to be relevant to the discussions which follow. In §4 and §5 we will take up in order the issues of (singular) pragmatic and semantic reference, closing in §6

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOME REMARKS ON ALMOST UNISERIAL RINGS AND MODULES

In this paper we study almost uniserial rings and modules. An R−module M is called almost uniserial if any two nonisomorphic submodules are linearly ordered by inclusion. A ring R is an almost left uniserial ring if R_R is almost uniserial. We give some necessary and sufficient condition for an Artinian ring to be almost left uniserial.

متن کامل

SOME REMARKS ON GENERALIZATIONS OF MULTIPLICATIVELY CLOSED SUBSETS

Let R be a commutative ring with identity and Mbe a unitary R-module. In this paper we generalize the conceptmultiplicatively closed subset of R and we study some propertiesof these genaralized subsets of M. Among the many results in thispaper, we generalize some well-known theorems about multiplicativelyclosed subsets of R to these generalized subsets of M. Alsowe show that some other well-kno...

متن کامل

Some remarks on generalizations of classical prime submodules

Let $R$ be a commutative ring with identity and $M$ be a unitary $R$-module. Suppose that $phi:S(M)rightarrow S(M)cup lbraceemptysetrbrace$ be a function where $S(M)$ is the set of all submodules of $M$. A proper submodule $N$ of $M$ is called an $(n-1, n)$-$phi$-classical prime submodule, if whenever $r_{1},ldots,r_{n-1}in R$ and $min M$ with $r_{1}ldots r_{n-1}min Nsetminusphi(N)$, then $r_{1...

متن کامل

Some Remarks on Generalized Sequence Space of Bounded Variation of Sequences of Fuzzy Numbers

The idea of difference sequences of real (or complex) numbers was introducedby Ki zmaz cite{Kizmaz}. In this paper, using the difference operator and alacunary sequence, we introduce and examine the class of sequence $bv_{theta}left(  Delta,mathcal{F}right)  .$ We study some of its properties likesolidity, symmetricity, etc.

متن کامل

SOME REMARKS ON WEAKLY INVERTIBLE FUNCTIONS IN THE UNIT BALL AND POLYDISK

We will present an approach to deal with a problem of existence of (not) weakly invertible functions in various spaces of analytic functions in the unit ball and polydisk based on estimates for integral operators acting between functional classes of different dimensions.

متن کامل

Some remarks on the arithmetic-geometric index

Using an identity for effective resistances, we find a relationship between the arithmetic-geometric index and the global ciclicity index. Also, with the help of majorization, we find tight upper and lower bounds for the arithmetic-geometric index.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011